Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.057
Filtrar
1.
AMB Express ; 14(1): 36, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615114

RESUMO

Tuberculosis (TB) poses significant challenges due to its high transmissibility within populations and intrinsic resistance to treatment, rendering it a formidable respiratory disease with a substantial susceptibility burden. This study was designed to identify new potential therapeutic targets for TB and establish a diagnostic model. mRNA expression data for TB were from GEO database, followed by conducting differential expression analysis. The top 50 genes with differential expression were subjected to GO and KEGG enrichment analyses. To establish a PPI network, the STRING database was utilized, and hub genes were identified utilizing five algorithms (EPC, MCC, MNC, Radiality, and Stress) within the cytoHubba plugin of Cytoscape software. Furthermore, a hub gene co-expression network was constructed using the GeneMANIA database. Consistency clustering was performed on hub genes, and ssGSEA was utilized to analyze the extent of immune infiltration in different subgroups. LASSO analysis was employed to construct a diagnostic model, and ROC curves were used for validation. Through the analysis of GEO data, a total of 159 genes were identified as differentially expressed. Further, GO and KEGG enrichment analyses revealed that these genes were mainly enriched in viral defense, symbiotic defense, and innate immune response-related pathways. Hub genes, including DDX58, IFIT2, IFIH1, RSAD2, IFI44L, OAS2, OAS1, OASL, IFIT1, IFIT3, MX1, STAT1, and ISG15, were identified using cytoHubba analysis of the PPI network. The GeneMANIA analysis unmasked that the co-expression rate of hub genes was 81.55%, and the physical interaction rate was 12.27%. Consistency clustering divided TB patients into two subgroups, and ssGSEA revealed different degrees of immune infiltration in different subgroups. LASSO analysis identified IFIT1, IFIT2, IFIT3, IFIH1, RSAD2, OAS1, OAS2, and STAT1 as eight immune-related key genes, and a diagnostic model was constructed. The ROC curve demonstrated that the model exhibited excellent diagnostic performance. DDX58, IFIT2, IFIH1, RSAD2, IFI44L, OAS2, OAS1, OASL, IFIT1, IFIT3, MX1, STAT1, and ISG15 were hub genes in TB, and the diagnostic model based on eight immune-related key genes exhibited good diagnostic performance.

2.
Head Neck ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622973

RESUMO

BACKGROUND: Trigeminal trophic syndrome (TTS) is a rare condition caused by damage to the trigeminal nervous system, resulting in sensory disturbances and ulcers on the face. Treating TTS is complex and often requires medical or surgical intervention like flap reconstruction. However, there is limited research on surgical treatments for TTS ulcers. METHODS: We report the case of a 19-year-old man with TTS. We employed an innovative surgical technique involving dual cross-face nerve grafts. In the initial procedure, corneal neuralization was accomplished using supraorbital and cross-face infraorbital nerve graft. The subsequent operation utilized auricular composite tissue flap transplantation repair and cross-face mental nerve graft. RESULTS: This procedure led to rapid and sustained healing, as well as aesthetic improvement. CONCLUSION: Cross-face nerve grafts is a promising tool in the treatment of refractory ulcers caused by diseases such as TTS.

3.
Phys Rev Lett ; 132(13): 133603, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613308

RESUMO

An integrated quantum light source is increasingly desirable in large-scale quantum information processing. Despite recent remarkable advances, a new material platform is constantly being explored for the fully on-chip integration of quantum light generation, active and passive manipulation, and detection. Here, for the first time, we demonstrate a gallium nitride (GaN) microring based quantum light generation in the telecom C-band, which has potential toward the monolithic integration of quantum light source. In our demonstration, the GaN microring has a free spectral range of 330 GHz and a near-zero anomalous dispersion region of over 100 nm. The generation of energy-time entangled photon pair is demonstrated with a typical raw two-photon interference visibility of 95.5±6.5%, which is further configured to generate a heralded single photon with a typical heralded second-order autocorrelation g_{H}^{(2)}(0) of 0.045±0.001. Our results pave the way for developing a chip-scale quantum photonic circuit.

4.
Apoptosis ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558206

RESUMO

Diabetic nephropathy (DN) is a serious public health problem worldwide, and ferroptosis is deeply involved in the pathogenesis of DN. Prediabetes is a critical period in the prevention and control of diabetes and its complications, in which kidney injury occurs. This study aimed to explore whether ferroptosis would induce kidney injury in prediabetic mice, and whether vitamin D (VD) supplementation is capable of preventing kidney injury by inhibiting ferroptosis, while discussing the potential mechanisms. High-fat diet (HFD) fed KKAy mice and high glucose (HG) treated HK-2 cells were used as experimental subjects in the current study. Our results revealed that serious injury and ferroptosis take place in the kidney tissue of prediabetic mice; furthermore, VD intervention significantly improved the kidney structure and function in prediabetic mice and inhibited ferroptosis, showing ameliorated iron deposition, enhanced antioxidant capability, reduced reactive oxygen species (ROS) and lipid peroxidation accumulation. Meanwhile, VD up-regulated Klotho, solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression, and down-regulated p53, transferrin receptor 1 (TFR1) and Acyl-Coenzyme A synthetase long-chain family member 4 (ACSL4) expression. Moreover, we demonstrated that HG-induced ferroptosis is antagonized by treatment of VD and knockdown of Klotho attenuates the protective effect of VD on ferroptosis in vitro. In conclusion, ferroptosis occurs in the kidney of prediabetic mice and VD owns a protective effect on prediabetic kidney injury, possibly by via the Klotho/p53 pathway, thus inhibiting hyperglycemia-induced ferroptosis.

5.
J Exp Clin Cancer Res ; 43(1): 95, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561797

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. Current treatment options are limited and often ineffective. CAR T cell therapy has shown success in treating hematologic malignancies, and there is growing interest in its potential application in solid tumors, including GBM. However, current CAR T therapy lacks clinical efficacy against GBM due to tumor-related resistance mechanisms and CAR T cell deficiencies. Therefore, there is a need to improve CAR T cell therapy efficacy in GBM. METHODS: We conducted large-scale CRISPR interference (CRISPRi) screens in GBM cell line U87 MG cells co-cultured with B7-H3 targeting CAR T cells to identify genetic modifiers that can enhance CAR T cell-mediated tumor killing. Flow cytometry-based tumor killing assay and CAR T cell activation assay were performed to validate screening hits. Bioinformatic analyses on bulk and single-cell RNA sequencing data and the TCGA database were employed to elucidate the mechanism underlying enhanced CAR T efficacy upon knocking down the selected screening hits in U87 MG cells. RESULTS: We established B7-H3 as a targetable antigen for CAR T therapy in GBM. Through large-scale CRISPRi screening, we discovered genetic modifiers in GBM cells, including ARPC4, PI4KA, ATP6V1A, UBA1, and NDUFV1, that regulated the efficacy of CAR T cell-mediated tumor killing. Furthermore, we discovered that TNFSF15 was upregulated in both ARPC4 and NDUFV1 knockdown GBM cells and revealed an immunostimulatory role of TNFSF15 in modulating tumor-CAR T interaction to enhance CAR T cell efficacy. CONCLUSIONS: Our study highlights the power of CRISPR-based genetic screening in investigating tumor-CAR T interaction and identifies potential druggable targets in tumor cells that confer resistance to CAR T cell killing. Furthermore, we devised targeted strategies that synergize with CAR T therapy against GBM. These findings shed light on the development of novel combinatorial strategies for effective immunotherapy of GBM and other solid tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Receptores de Antígenos Quiméricos , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Imunoterapia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral
6.
Beilstein J Org Chem ; 20: 661-671, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590540

RESUMO

Herein, we report a visible-light-mediated palladium-catalyzed three-component radical-polar crossover carboamination of 1,3-dienes or allenes with diazo esters and amines, affording unsaturated γ- and ε-amino acid derivatives with diverse structures. In this methodology, the diazo compound readily transforms into a hybrid α-ester alkylpalladium radical with the release of dinitrogen. The radical intermediate selectively adds to the double bond of a 1,3-diene or allene, followed by the allylpalladium radical-polar crossover path and selective allylic substitution with the amine substrate, thereby leading to a single unsaturated γ- or ε-amino acid derivative. This approach proceeds under mild and simple reaction conditions and shows high functional group tolerance, especially in the incorporation of various bioactive molecules. The studies on scale-up reactions and diverse derivatizations highlight the practical utility of this multicomponent reaction protocol.

7.
iScience ; 27(4): 109469, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577101

RESUMO

The extracellular superoxide dismutases (ecSODs) secreted by Microplitis bicoloratus reduce the reactive oxygen species (ROS) stimulated by the Microplitis bicoloratus bracovirus. Here, we demonstrate that the bacterial transferase hexapeptide (hexapep) motif and bacterial-immunoglobulin-like (BIg-like) domain of ecSODs bind to the cell membrane and transiently open hemichannels, facilitating ROS reductions. RNAi-mediated ecSOD silencing in vivo elevated ROS in host hemocytes, impairing parasitoid larva development. In vitro, the ecSOD-monopolymer needed to be membrane bound to open hemichannels. Furthermore, the hexapep motif in the beta-sandwich of ecSOD49 and ecSOD58, and BIg-like domain in the signal peptides of ecSOD67 were required for cell membrane binding. Hexapep motif and BIg-like domain deletions induced ecSODs loss of adhesion and ROS reduction failure. The hexapep motif and BIg-like domain mediated ecSOD binding via upregulating innexins and stabilizing the opened hemichannels. Our findings reveal a mechanism through which ecSOD reduces ROS, which may aid in developing anti-redox therapy.

8.
Nat Commun ; 15(1): 3066, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594254

RESUMO

Releasing pre-strained two-dimensional nanomembranes to assemble on-chip three-dimensional devices is crucial for upcoming advanced electronic and optoelectronic applications. However, the release process is affected by many unclear factors, hindering the transition from laboratory to industrial applications. Here, we propose a quasistatic multilevel finite element modeling to assemble three-dimensional structures from two-dimensional nanomembranes and offer verification results by various bilayer nanomembranes. Take Si/Cr nanomembrane as an example, we confirm that the three-dimensional structural formation is governed by both the minimum energy state and the geometric constraints imposed by the edges of the sacrificial layer. Large-scale, high-yield fabrication of three-dimensional structures is achieved, and two distinct three-dimensional structures are assembled from the same precursor. Six types of three-dimensional Si/Cr photodetectors are then prepared to resolve the incident angle of light with a deep neural network model, opening up possibilities for the design and manufacturing methods of More-than-Moore-era devices.

9.
J Transl Med ; 22(1): 360, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632606

RESUMO

BACKGROUND: Preeclampsia is a pregnancy-specific disease leading to maternal and perinatal morbidity. Hypertension and inflammation are the main characteristics of preeclampsia. Many factors can lead to hypertension and inflammation, including gut microbiota which plays an important role in hypertension and inflammation in humans. However, alterations to the gut microbiome and fecal metabolome, and their relationships in severe preeclampsia are not well known. This study aims to identify biomarkers significantly associated with severe preeclampsia and provide a knowledge base for treatments regulating the gut microbiome. METHODS: In this study, fecal samples were collected from individuals with severe preeclampsia and healthy controls for shotgun metagenomic sequencing to evaluate changes in gut microbiota composition. Quantitative polymerase chain reaction analysis was used to validate the reliability of our shotgun metagenomic sequencing results. Additionally, untargeted metabolomics analysis was performed to measure fecal metabolome concentrations. RESULTS: We identified several Lactobacillaceae that were significantly enriched in the gut of healthy controls, including Limosilactobacillus fermentum, the key biomarker distinguishing severe preeclampsia from healthy controls. Limosilactobacillus fermentum was significantly associated with shifts in KEGG Orthology (KO) genes and KEGG pathways of the gut microbiome in severe preeclampsia, such as flagellar assembly. Untargeted fecal metabolome analysis found that severe preeclampsia had higher concentrations of Phenylpropanoate and Agmatine. Increased concentrations of Phenylpropanoate and Agmatine were associated with the abundance of Limosilactobacillus fermentum. Furthermore, all metabolites with higher abundances in healthy controls were enriched in the arginine and proline metabolism pathway. CONCLUSION: Our research indicates that changes in metabolites, possibly due to the gut microbe Limosilactobacillus fermentum, can contribute to the development of severe preeclampsia. This study provides insights into the interaction between gut microbiome and fecal metabolites and offers a basis for improving severe preeclampsia by modulating the gut microbiome.


Assuntos
Agmatina , Microbioma Gastrointestinal , Hipertensão , Pré-Eclâmpsia , Complicações na Gravidez , Feminino , Gravidez , Humanos , Microbioma Gastrointestinal/genética , Reprodutibilidade dos Testes , Fezes/microbiologia , Metaboloma , Inflamação , Bactérias , RNA Ribossômico 16S
10.
Inorg Chem ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641432

RESUMO

Multi-interpenetrated metal-organic frameworks (MOFs) have exhibited excellent performance in selective adsorption due to the variable post-interspersed flexibility, but the design and control remain challenging. Herein, two anthracene-based ligands, 4,4'-(anthracene-9,10-diyl)dibenzoic acid (H2L1) and 9,10-di(pyridin-4-yl)anthracene (L2), are used to construct a new three-dimensional 6-fold interpenetrated MOF [Zn(L1)(L2)]n (NBU-X1), which exhibits multiple C-H···π interactions that enhance the structural rigidity, thereby entangling with a C2H2/C2H4 separation performance. In this material, the incorporation of abundant anthracene rings within the framework not only partitions and restricts the pore window size to a quasi-double pore but also stabilizes it through host-host interactions. The structural stability upon heating or guest displacement/removal has been investigated by single-crystal X-ray diffraction and in situ variable-temperature powder X-ray diffraction, in contrast to the extreme flexibility of most multi-interpenetrated MOFs. The performance of purifying C2H4 from C2H2/C2H4 mixtures has been proved by dynamic breakthrough tests.

11.
J Org Chem ; 89(8): 5277-5286, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38587487

RESUMO

A general and practical method for the construction of various 3,4,5-trisubstituted 1,2,4-triazoles via I2-catalyzed cycloaddition of N-functionalized amidines with hydrazones is reported. This strategy features cheap and readily available catalyst and starting materials, broader substrate scope, and moderate-to-good yields. The mechanism study shows that the existence of hydrogen on the nitrogen of hydrazones is crucial for this transformation.

12.
Heliyon ; 10(8): e29113, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628747

RESUMO

With the increasing lethality of modern weapons, the development of body armor has become increasingly important. The main objective of current research is to make protective gear lighter and increase material ballistic performance. Here, a model ballistic-resistant composite material was produced consisting of a polyurea coating on Kevlar plain weave fabric. The effects of coating location and thickness on the ballistic performance of this aramid fabric was examined using yarn pull-out test, ballistic impact test, and numerical simulation. The results demonstrated that the polyurea coating significantly increased the friction between yarns. The maximum yarn pull-out force of the polyurea-coated fiber composite was 40-fold greater than that of the uncoated fiber. Moreover, the application of the coating on the front side outperformed the rear side in terms of ballistic performance. In particular, the front-side 0.2 mm coating was observed to result in the most considerable ballistic limit improvement, increasing the ballistic limit of a single layer of Kevlar fabric from 90.8 to 143.45 m/s. A high precision mesoscale simulation model was developed to analyze the impact of the polyurea coating on the deformation and damage of the Kevlar fabric. These results will contribute to developing new bullet-proof composite materials for the safety protection of personnel.

13.
Inflammopharmacology ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642223

RESUMO

Ulcerative colitis (UC) is a severe hazard to human health. Since pathogenesis of UC is still unclear, current therapy for UC treatment is far from optimal. Isoxanthohumol (IXN), a prenylflavonoid from hops and beer, possesses anti-microbial, anti-oxidant, anti-inflammatory, and anti-angiogenic properties. However, the potential effects of IXN on the alleviation of colitis and the action of the mechanism is rarely studied. Here, we found that administration of IXN (60 mg/kg/day, gavage) significantly attenuated dextran sodium sulfate (DSS)-induced colitis, evidenced by reduced DAI scores and histological improvements, as well as suppressed the pro-inflammatory Th17/Th1 cells but promoted the anti-inflammatory Treg cells. Mechanically, oral IXN regulated T cell development, including inhibiting CD4+ T cell proliferation, promoting apoptosis, and regulating Treg/Th17 balance. Furthermore, IXN relieved colitis by restoring gut microbiota disorder and increasing gut microbiota diversity, which was manifested by maintaining the ratio of Firmicutes/Bacteroidetes balance, promoting abundance of Bacteroidetes and Ruminococcus, and suppressing abundance of proteobacteria. At the same time, the untargeted metabolic analysis of serum samples showed that IXN promoted the upregulation of D-( +)-mannose and L-threonine and regulated pyruvate metabolic pathway. Collectively, our findings revealed that IXN could be applied as a functional food component and served as a therapeutic agent for the treatment of UC.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38639478

RESUMO

Sodium (Na) super ion conductor (NASICON) structure Na3MnTi(PO4)3 (NMTP) is considered a promising cathode for sodium-ion batteries due to its reversible three-electron reaction. However, the inferior electronic conductivity and sluggish reaction kinetics limit its practical applications. Herein, we successfully constructed a three-dimensional cross-linked porous architecture NMTP material (AsN@NMTP/C) by a natural microbe of Aspergillus niger (AsN), and the structure of different NMTP cathodes was optimized by adjusting different transition metal Mn/Ti ratios. Both approaches effectively altered the three-dimensional NMTP structure, not only improving electronic conductivity and controlling Na+ diffusion pathways but also enhancing the electrochemical kinetics of the material. The resultant AsN@NMTP/C-650, sintered at 650 °C, exhibits better electrochemical performance with higher reversible three-electron reactions corresponding to the voltage platforms of Ti4+/3+, Mn3+/2+, and Mn4+/3+ around 2.1, 3.6, and 4.1 V (vs Na+/Na), respectively. The capacity retention rate is up to 89.3% after 1000 cycles at a 2C rate. Moreover, a series of results confirms that the Na3.4Mn1.2Ti0.8(PO4)3 cathode has the most excellent electrochemical performance when the Mn/Ti ratio is 1.2/0.8, with a high capacity of 96.59 mAh g-1 and 97.1% capacity retention after 500 cycles.

15.
J Fluoresc ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639858

RESUMO

Two fluorescent probes, Y1-2 were synthesized from 2-acetonaphthone, 4-acetylbiphenyl, and phenyl hydrazine by Vilsmeier-Haack reaction and Knoevenagel condensation. Their recognition efficacies for N2H4 were tested by UV-visible absorption spectroscopy and fluorescence emission spectroscopy. The recognition mechanism were studies by density-functional theory calculations, and the effect of pH on N2H4 recognition was also studied. The results showed that the probe Y1-2 has high selectivity and a low detection limit for N2H4, and the recognition of N2H4 can be accomplished at physiological pH. The probes have had obvious aggregation-induced luminescence effect, large Stokes shift, high sensitivity, and can be successfully applied to live cell imaging.

16.
Materials (Basel) ; 17(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612047

RESUMO

The phase segregation of wide-bandgap perovskite is detrimental to a device's performance. We find that Sodium Benzenesulfonate (SBS) can improve the interface passivation of PTAA, thus addressing the poor wettability issue of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA). This improvement helps mitigate interface defects caused by poor contact between the perovskite and PTAA, reducing non-radiative recombination. Additionally, enhanced interface contact improves the crystallinity of the perovskite, leading to higher-quality perovskite films. By synergistically controlling the crystallization and trap passivation to reduce the phase segregation, SBS-modified perovskite solar cells (PSCs) achieved a power conversion efficiency (PCE) of 20.27%, with an open-circuit voltage (Voc) of 1.18 V, short-circuit current density (Jsc) of 20.93 mA cm-2, and fill factor (FF) of 82.31%.

17.
Heliyon ; 10(8): e29300, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644859

RESUMO

Torsades de Pointes (TdP) is a malignant polymorphic ventricular tachycardia with heart rate corrected QT interval (QTc) prolongation, which may be attributed to congenital and acquired factors. Although various acquired factors for TdP have been summarized, levosimendan administration in complex postoperative settings is relatively uncommon. Timely identification of potential causes and appropriate management may improve the outcome. Herein, we describe the postoperative case of a 56-year-old female with initial normal QTc who accepted the administration of levosimendan for heart failure, suffered TdP, cardiac arrest, and possible Takotsubo cardiomyopathy, further genetically confirmed as long QT syndrome type 1 (LQT1). The patient was successfully treated with magnesium sulfate, atenolol, and implantable cardioverter defibrillator implantation. There should be a careful evaluation of the at-risk populations and close monitoring of the electrocardiograms, particularly the QT interval, to reduce the risk of near-fatal arrhythmias during the use of levosimendan.

18.
Pharmgenomics Pers Med ; 17: 149-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645701

RESUMO

Background: Mutations in mitochondrial tRNA (mt-tRNA) could be the origin of some type 2 diabetes mellitus (T2DM) cases, but the mechanism remained largely unknown. Aim: The aim of this study was to assess the impact of a novel mitochondrial tRNACys/tRNATyr A5826G mutation on the development and progression of T2DM. Methods: A four-generation Han Chinese family with maternally inherited diabetes underwent clinical, genetic and biochemical analyses. The mitochondrial DNA (mtDNA) mutations of three matrilineal relatives were screened by PCR-Sanger sequencing. Furthermore, to see whether m.A5826G mutations affected mitochondrial functions, the cybrid cell lines were derived from three subjects with m.A5826G mutation and three controls without this mutation. ATP was evaluated by luminescent cell viability assay, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) were determined by flow cytometry. The student's two-tailed, unpaired t-test was used to assess the statistical significance between the control and mutant results. Results: The age at onset of diabetes in this pedigree varied from 40 to 63 years, with an average of 54 years. Mutational analysis of mitochondrial genomes revealed the presence of a novel m.A5826G mutation. Interestingly, the m.A5826G mutation occurred at the conjunction between tRNACys and tRNATyr, a very conserved position that was critical for tRNAs processing and functions. Using trans-mitochondrial cybrid cells, we found that mutant cells carrying the m.A5826G showed approximately 36.5% and 22.4% reductions in ATP and MMP, respectively. By contrast, mitochondrial ROS levels increased approximately 33.3%, as compared with the wild type cells. Conclusion: A novel m.A5826G mutation was identified in a pedigree with T2DM, and this mutation would lead to mitochondrial dysfunction. Thus, the genetic spectrum of mitochondrial diabetes was expanded by including m.A5826G mutation in tRNACys/tRNATyr, our study provided novel insight into the molecular pathogenesis, early diagnosis, prevention and clinical treatment for mitochondrial diabetes.

19.
Sci Adv ; 10(11): eadj8408, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489354

RESUMO

Reported fault slip rates, a key quantity for earthquake hazard and risk analyses, have been inconsistent for the northern Dead Sea fault (DSF). Studies of offset geological and archeological structures suggest a slip rate of 4 to 6 millimeters per year, consistent with the southern DSF, whereas geodetic slip-rate estimates are only 2 to 3 millimeters per year. To resolve this inconsistency and overcome limited access to the northern DSF in Syria, we here use burst-overlap interferometric time-series analysis of satellite radar images to provide an independent slip-rate estimate of ~2.8 millimeters per year. We also show that the high geologic slip rate could, by chance, be inflated by earthquake clustering and suggest that the slip-rate decrease from the southern to northern DSF can be explained by splay faults and diffuse offshore deformation. These results suggest a microplate west of the northern DSF and a lower earthquake hazard for that part of the fault.

20.
Chem Sci ; 15(10): 3610-3615, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455024

RESUMO

We report herein the synthesis of highly enantiopure inherently chiral N3,O-calix[2]arene[2]triazines from enantioselective macrocyclization enabled by chiral phosphoric acid-catalyzed intramolecular nucleophilic aromatic substitution reaction. In contrast to documented examples, the inherent chirality of the acquired compounds arises from one heteroatom difference in the linking positions of heteracalix[4](het)arenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...